p-group, metabelian, nilpotent (class 2), monomial
Aliases: C22.93C25, C42.85C23, C23.137C24, C4○D4⋊6Q8, Q8.16(C2×Q8), D4.15(C2×Q8), D4○(C42.C2), Q8○(C42.C2), Q8⋊3Q8⋊17C2, D4⋊3Q8⋊22C2, (C2×C4).83C24, C4.56(C22×Q8), C2.18(Q8×C23), C4⋊C4.299C23, C4⋊Q8.343C22, (C2×D4).507C23, (C4×D4).234C22, (C4×Q8).221C22, (C2×Q8).289C23, C22.13(C22×Q8), C22⋊C4.103C23, (C22×C4).364C23, (C2×C42).947C22, C22⋊Q8.116C22, C2.27(C2.C25), C42.C2.152C22, C23.41C23⋊17C2, C42⋊C2.228C22, C23.37C23⋊37C2, C23.33C23.12C2, (C4×C4○D4).30C2, (C2×C4).110(C2×Q8), (C2×C42.C2)⋊45C2, (C2×C4⋊C4).705C22, (C2×C4○D4).329C22, SmallGroup(128,2236)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.93C25
G = < a,b,c,d,e,f,g | a2=b2=d2=f2=1, c2=b, e2=ba=ab, g2=a, dcd=gcg-1=ac=ca, fdf=ad=da, ae=ea, af=fa, ag=ga, ece-1=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cf=fc, de=ed, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 620 in 494 conjugacy classes, 428 normal (10 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2×Q8, C4○D4, C2×C42, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C22⋊Q8, C42.C2, C42.C2, C4⋊Q8, C2×C4○D4, C4×C4○D4, C23.33C23, C2×C42.C2, C23.37C23, C23.41C23, D4⋊3Q8, Q8⋊3Q8, C22.93C25
Quotients: C1, C2, C22, Q8, C23, C2×Q8, C24, C22×Q8, C25, Q8×C23, C2.C25, C22.93C25
(1 51)(2 52)(3 49)(4 50)(5 36)(6 33)(7 34)(8 35)(9 21)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 31)(20 32)(37 61)(38 62)(39 63)(40 64)(41 53)(42 54)(43 55)(44 56)(45 57)(46 58)(47 59)(48 60)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 15)(2 28)(3 13)(4 26)(5 58)(6 47)(7 60)(8 45)(9 53)(10 42)(11 55)(12 44)(14 50)(16 52)(17 61)(18 38)(19 63)(20 40)(21 41)(22 54)(23 43)(24 56)(25 49)(27 51)(29 37)(30 62)(31 39)(32 64)(33 59)(34 48)(35 57)(36 46)
(1 57 49 47)(2 60 50 46)(3 59 51 45)(4 58 52 48)(5 16 34 26)(6 15 35 25)(7 14 36 28)(8 13 33 27)(9 31 23 17)(10 30 24 20)(11 29 21 19)(12 32 22 18)(37 41 63 55)(38 44 64 54)(39 43 61 53)(40 42 62 56)
(1 43)(2 44)(3 41)(4 42)(5 18)(6 19)(7 20)(8 17)(9 13)(10 14)(11 15)(12 16)(21 25)(22 26)(23 27)(24 28)(29 35)(30 36)(31 33)(32 34)(37 45)(38 46)(39 47)(40 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 23 51 11)(2 12 52 24)(3 21 49 9)(4 10 50 22)(5 62 36 38)(6 39 33 63)(7 64 34 40)(8 37 35 61)(13 41 25 53)(14 54 26 42)(15 43 27 55)(16 56 28 44)(17 45 29 57)(18 58 30 46)(19 47 31 59)(20 60 32 48)
G:=sub<Sym(64)| (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,15)(2,28)(3,13)(4,26)(5,58)(6,47)(7,60)(8,45)(9,53)(10,42)(11,55)(12,44)(14,50)(16,52)(17,61)(18,38)(19,63)(20,40)(21,41)(22,54)(23,43)(24,56)(25,49)(27,51)(29,37)(30,62)(31,39)(32,64)(33,59)(34,48)(35,57)(36,46), (1,57,49,47)(2,60,50,46)(3,59,51,45)(4,58,52,48)(5,16,34,26)(6,15,35,25)(7,14,36,28)(8,13,33,27)(9,31,23,17)(10,30,24,20)(11,29,21,19)(12,32,22,18)(37,41,63,55)(38,44,64,54)(39,43,61,53)(40,42,62,56), (1,43)(2,44)(3,41)(4,42)(5,18)(6,19)(7,20)(8,17)(9,13)(10,14)(11,15)(12,16)(21,25)(22,26)(23,27)(24,28)(29,35)(30,36)(31,33)(32,34)(37,45)(38,46)(39,47)(40,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,23,51,11)(2,12,52,24)(3,21,49,9)(4,10,50,22)(5,62,36,38)(6,39,33,63)(7,64,34,40)(8,37,35,61)(13,41,25,53)(14,54,26,42)(15,43,27,55)(16,56,28,44)(17,45,29,57)(18,58,30,46)(19,47,31,59)(20,60,32,48)>;
G:=Group( (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,15)(2,28)(3,13)(4,26)(5,58)(6,47)(7,60)(8,45)(9,53)(10,42)(11,55)(12,44)(14,50)(16,52)(17,61)(18,38)(19,63)(20,40)(21,41)(22,54)(23,43)(24,56)(25,49)(27,51)(29,37)(30,62)(31,39)(32,64)(33,59)(34,48)(35,57)(36,46), (1,57,49,47)(2,60,50,46)(3,59,51,45)(4,58,52,48)(5,16,34,26)(6,15,35,25)(7,14,36,28)(8,13,33,27)(9,31,23,17)(10,30,24,20)(11,29,21,19)(12,32,22,18)(37,41,63,55)(38,44,64,54)(39,43,61,53)(40,42,62,56), (1,43)(2,44)(3,41)(4,42)(5,18)(6,19)(7,20)(8,17)(9,13)(10,14)(11,15)(12,16)(21,25)(22,26)(23,27)(24,28)(29,35)(30,36)(31,33)(32,34)(37,45)(38,46)(39,47)(40,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,23,51,11)(2,12,52,24)(3,21,49,9)(4,10,50,22)(5,62,36,38)(6,39,33,63)(7,64,34,40)(8,37,35,61)(13,41,25,53)(14,54,26,42)(15,43,27,55)(16,56,28,44)(17,45,29,57)(18,58,30,46)(19,47,31,59)(20,60,32,48) );
G=PermutationGroup([[(1,51),(2,52),(3,49),(4,50),(5,36),(6,33),(7,34),(8,35),(9,21),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,31),(20,32),(37,61),(38,62),(39,63),(40,64),(41,53),(42,54),(43,55),(44,56),(45,57),(46,58),(47,59),(48,60)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,15),(2,28),(3,13),(4,26),(5,58),(6,47),(7,60),(8,45),(9,53),(10,42),(11,55),(12,44),(14,50),(16,52),(17,61),(18,38),(19,63),(20,40),(21,41),(22,54),(23,43),(24,56),(25,49),(27,51),(29,37),(30,62),(31,39),(32,64),(33,59),(34,48),(35,57),(36,46)], [(1,57,49,47),(2,60,50,46),(3,59,51,45),(4,58,52,48),(5,16,34,26),(6,15,35,25),(7,14,36,28),(8,13,33,27),(9,31,23,17),(10,30,24,20),(11,29,21,19),(12,32,22,18),(37,41,63,55),(38,44,64,54),(39,43,61,53),(40,42,62,56)], [(1,43),(2,44),(3,41),(4,42),(5,18),(6,19),(7,20),(8,17),(9,13),(10,14),(11,15),(12,16),(21,25),(22,26),(23,27),(24,28),(29,35),(30,36),(31,33),(32,34),(37,45),(38,46),(39,47),(40,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,23,51,11),(2,12,52,24),(3,21,49,9),(4,10,50,22),(5,62,36,38),(6,39,33,63),(7,64,34,40),(8,37,35,61),(13,41,25,53),(14,54,26,42),(15,43,27,55),(16,56,28,44),(17,45,29,57),(18,58,30,46),(19,47,31,59),(20,60,32,48)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 4A | ··· | 4L | 4M | ··· | 4AH |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | Q8 | C2.C25 |
kernel | C22.93C25 | C4×C4○D4 | C23.33C23 | C2×C42.C2 | C23.37C23 | C23.41C23 | D4⋊3Q8 | Q8⋊3Q8 | C4○D4 | C2 |
# reps | 1 | 1 | 2 | 3 | 3 | 6 | 12 | 4 | 8 | 4 |
Matrix representation of C22.93C25 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
0 | 0 | 0 | 0 | 2 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 4 | 0 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[3,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,2],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,4,0,0,0,0,4,0,0,0,0,1,0,0,0],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,3,0,0,0,0,0,0,0,0,2,0,0,0,0,3,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0] >;
C22.93C25 in GAP, Magma, Sage, TeX
C_2^2._{93}C_2^5
% in TeX
G:=Group("C2^2.93C2^5");
// GroupNames label
G:=SmallGroup(128,2236);
// by ID
G=gap.SmallGroup(128,2236);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,448,477,1430,520,570,1684,102]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=d^2=f^2=1,c^2=b,e^2=b*a=a*b,g^2=a,d*c*d=g*c*g^-1=a*c=c*a,f*d*f=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*f=f*c,d*e=e*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations